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Inelastic Column Theories and an Analysis
of Experimental Observations’

CHI-TEH WANGt
New York Uniersity

SUMMARY

The inelastic column buckling theories as usually presented are
found to be rather confusing. Many experimental results still
cannot be explained satisfactorily by the theories as they stand.
It appears to be pertinent, therefore, to define the inelastic buck-
ling problem once more from a more rigorous mathematical point
of view and to give a more rigorous mathematical treatment of
the problem. The effect of assuming a constant tangent modulus
on the buckling load in the tangent modulus formula is discussed,
and many anomalies of column behavior in the inelastic region are
explained.

In making such a study, it is important to emphasize the dif-
ference between an ideal column and an actual column and the
difference between the buckling load and the ultimate load.
Southwell’s method! for analyzing column tests, which was origi-
nally proposed for the case of elastic buckling, is now shown to be
valid for inelastic buckling. It is also shown that, in applying
the method, instead of analyzing load and deflection measure-
ments, simultaneous load and strain readings can be used. Thus,
it is easier to measure the strain more accurately.

INTRODUCTION

MUCH INTEREST IN INELASTIC COLUMN THEORY has
recently been aroused by the presentation of
Shanley’s paper.? The value of the paper lies in the
explanation of certain physical facts concerning the
inelastic buckling process. By means of an idealized
hypothetical column, Shanley has shown that ‘‘bending
begins at the tangent modulus load and the column
load increases with increasing lateral deflection, ap-
proaching the reduced-modulus load as a limit if the
tangent modulus is assumed to remain constant.”
There are many ambiguities in this statement; for
example, what is meant by the phrase ‘‘bending begins”
and what is meant by ‘“‘the column load?”’ And, still
further, would such a conclusion, drawn from the study
of an idealized hypothetical column, also be true for
any other columns?

A study of the experimental results on short col-
umns—e.g., Fig. 8&—immediately reveals the previous
conclusion is not quite true, because, when the column
compressive stress, P/4, is in the region of the pro-
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portional limit of the material, the test results indicate
that the so-called column loads are usually less than the
tangent modulus load, while Shanley has shown that
they must always be greater than, or equal to, the tan-
gent modulus load. The experimental results also in-
dicate that there is a consistent tendency for the column
load to be close to the reduced or double modulus load
rather than tangent modulus load when P/A4 is in the
region of yield stress. There must be a satisfactory
explanation for such consistent tendency, but it can-
not be found in the present-day theories.

It is the purpose of this paper to give a more rigorous
study of the inelastic column buckling theories and the
related experimental observations. By a more rigor-
ous mathematical treatment, it is found that many
anomalies of column behavior observed in the labora-
tory can be satisfactorily explained.

Erastic BUCKLING THEORY AND THE DIFFERENCE
BETWEEN THE BUCKLING LoaDp AND THE ULTIMATE
Loap OF AN IDEAL SLENDER COLUMN

In order to clarify the discussions on inelastic column
buckling, theories concerning elastic buckling will be
briefly reviewed.

The problem of elastic instability consists of deter-
mining the smallest load at which the original straight
form of equilibrium of a centrally loaded ideal column
becomes unstable. To formulate the problem mathe-
matically, it is usual to apply an infinitesimally small
disturbance to the originally straight column and to in-
vestigate whether this bent form of equilibrium can be
maintained by the axial load, P, acting alone when the
disturbance is removed. The idea of applying and
removing the small disturbance, though of no impor-
tance here, is important in the discussion of inelastic
buckling load and will be elaborated to some extent
later. Referring to Fig. 1, if such a bent form of
equilibrium is possible, at any cross section perpen-
dicular to the x-axis, the internal forces over the cross
section can be reduced to a compressive force applied at
the centroid of the cross section and a couple. The
equilibrium equations are, therefore, as follows:
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The bent form of equilibrium of an ideal column under
the action of axial load P.

Fic. 1.
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F16. 2 (left). Theoretical load-deflection curves for ideal and
actual slender columns. Fi1c. 3 (right). Bending of an ideal
column under a lateral disturbance.

>F =0 or Sao,d4d = P (1)
and

>M =0 or JaomdAd = —Py (2)

where o, is the normal stress acting at an arbitrary point
of the cross section which is at a distance 5 from the
centroidal axis, 4 is the cross-sectional area, y is the
deflection of the section from the centroidal axis, and
the integration is taken over the whole cross-sectional
area. Assuming that a plane perpendicular to the
centroidal axis of the column remains plane after bend-
ing, the x-component of the strain, ¢, at an arbitrary
point in a certain section is given by

& =& — (1/R) 3)

where ¢ is the strain al the centroidal axis, R is the
radius of curvature, and

1 df d%y/dx?
a5 ;= /3 (4)
R ds [1+ (dy/dx)?)

where s is the distance along the centroidal axis and 6
is the angle between s and x-axis. Integrating Egs.
(1) and (2) and denoting Ee by o, since o, = Ee, (E
being the Young’s modulus), it is found from Eq. (1)
that oo = P/A4, and Eq. (2) becomes

(dd/ds) + (P/EIy = 0 (®)

where I is the moment of inertia of the cross-sectional
area about the centroidal axis. The solution of Eq.
(5) can be expressed in terms of an elliptical integral
and is given in any standard treatise on the Theory of
Elasticity. When the deflection is small, the curvature
can be approximated by d%y/dx? and Eq. (5) is reduced
to the well-known Euler’s equation as follows:
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(d%y/dx®) + (P/EI)y = 0 (6)

Tt is well known that the differential Eq. (6) will have
a nontrivial solution only when

P, = CnmEI/L?, n =12 3, etc. N

The smallest value of P is at » = 1 and is equal to
P, = Cr’EI/L? ®)

where P, is the so-called buckling load, L is the length
of the column, and C is the coefficient of end fixity.
Physically, it indicates that a bent form of equilibrium
is possible when the axial load is of the magnitude given
by Eq. (8). Solution of Eq. (5) reveals something
more. It can be shown® that, at and below the buck-
ling load, the column has only one form of equilibrium—
i.e., the straight form. When the load is greater than
the buckling load, there are two possible forms of
equilibrium—the straight form which is unstable and
the bent form which is stable.

The results from Egs. (5) and (6) are plotted in Fig.
2. Suppose that the column is slender and that the
material can sustain-the compressive stress P/4A = ay
without failure of elasticity. The loading of the ideal
column will follow the curve OAB according to Eq. (6)
and OA C according to the more exact Eq. (5). Atsome
point D on the curve OAC, the center deflection § is so
large that the sum of direct compressive stress and
bending stress due to the bending moment P§ is suf-
ficient to produce elastic breakdown. Beyond this
point the actual curve OADE will begin to drop away
from OAC, since the material can now sustain less load
than before. The ultimate or maximum load a column
can carry then occurs at point D, and the buckling load
isat 4. Itisthus seen that for an ideal slender column
the ultimate load is always greater than the buckling
load. But aside from this fact, they are entirely dif-
ferent theoretically, because the ultimate load is de-
termined mainly by the mechanical properties of the
material of the column, while the buckling load is de-
termined mainly by the geometrical configuration of
the column. The former is a load due to the material
failure, and the latter is due to the instability of the
straight equilibrium form. '

LoADING OF AN ActuaL COLUMN

Whereas an ideal column must be perfectly straight
and made of material of homogeneous composition, an
actual column is more or less imperfect in that it may
be initially bent and may not be completely homogene-
ous. Itis obvious that the effect due to nonhomogene-
ity of the material cannot be taken into account in the
general theoretical discussion and will not be consid-
ered in this paper. Assume that the column is not
quite straight initially. Let y, denote the initial de-
flection of the column axis from the line of thrust.
Then Eq. (8) is replaced by
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[(@*y/dx*) — (@*y/dx*)] + (P/EDy =0  (9)
The form of y will now depend upon the form of y,,
both quantities being regarded as functions of x.
Provided that y, vanishes at either end of the column—
i.e., although the column has initial curvature it is cen-
troidally loaded—a general solution of Eq. (9) may be
obtained by expressing y and y, in terms of Fourier
series. Thus, if

y = 2}1 5, sin (nax/L) (10)

Yo = . 8, sin (nwx/L)
n=1

where 8, and 3, are constants, we find on substitution

that
8, = 8,/[1 — (P/P))], (11)

The deflection of the column at its center can be ob-
tained by substituting x = L/2 in Eq. (10), or

5’=51'—53+35—...

n =1, 2, 3, etc.

(12)

For an actual column corresponding to the ideal one
discussed previously, the deflection versus load curve
is also shown in Fig. 2. The loading of the column
will follow the curve FG according to Eq. (12). How-
ever, when the deflection is large, the simplified form of
curvature is no longer a good approximation. If the
more exact formula for the curvature is used, the load-
ing of the column will follow the curve FII. At some
point I or I’ on the curve, the maximum stress in the
column reaches the elastic limit, and then the actual
curve FIJ of FI'J' will drop away from FIH.

It is to be noted that, for an actual column, there is
only one form of equilibrium—i.e., the bent form which
is stable. Therefore, there is no such equilibrium load
at which an exchange of stabilities occurs. However,
the curve FG does approach the line 4 B as an asymptote.
But the loading curve will break away from the curve
FG before the deflection becomes too large. The ulti-
mate load, which corresponds to the point I or I’ in
Fig. 2, can be either greater or smaller than the buckling
load for the corresponding ideal column. Only in the
case of long columns can one expect that the ultimate
load is near to the buckling load. This is because the
buckling stress, P,/A, in this case is well below the
proportional limit and the deflection must be consider-
able when the elastic limit is reached. Because of this,
the maximum for P will occur somewhere on the flat
part of the curve thereby close to the horizontal line
AB. This agreement is a somewhat fortuitous occur-
rence and cannot be regarded as a general rule for
shorter columns.

INELASTIC BUCKLING THEORIES

When P/A = gyis beyond the elastic limit, the buck-
ling load can be defined as the smallest axial load at
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Fic. 4. A typical compressive stress-strain curve.

which the bent form of equilibrium of an originally
straight and centrally loaded column, resulting from
the action of a small disturbance, becomes stable. The
definition, that it is the smallest load at which the
straight form of equilibrium of a centrally loaded ideal
column becomes unstable, is not quite adequate. This
can be seen from the fact that the column, once it is
bent by a disturbance, will not return to its original
straight form because of permanent set, even though
the disturbance is removed. In other words, the
straight form may be called unstable in such cases.
In the elastic region, these two definitions are the
same.

As the understanding of inelastic buckling theories
depends greatly on the idea of the application of an
infinitesimally small disturbance, a word about such
disturbance appears to be pertinent. It is to be noted
that a disturbance is a small force or moment that can
be applied and removed at will. Referring to Fig. 3,
the disturbance is represented in the form of a small
lateral load P’. If P’ is applied before P reaches the
buckling load and is then removed, the ideal column
will resume its original straight form when no fiber is
stressed beyond the proportional limit. When some or
all of the fibers are stressed beyond the proportional
limit, the column, due to permanent set, will assume
the bent form as indicated by the dotted line in the fig-
ure, which is different from the original bent form when
P’ is acting on the column. This indicates that the
original bent form is not a stable form of equilibrium.
If P’ is applied to the column when P is equal to the
buckling load and then P’ is removed, the bent form
will remain unchanged—i.e., this bent form is stable.

While there is no importance in specifying when the
disturbance is applied and when it is removed in the
elastic case, the magnitude of the inelastic buckling
load depends intimately on such actions, for the process
of loading and unloading is now irreversible. The final
stress distribution at a cross section of the column can
be the result of many different types of loading, de-
pending on when the small disturbance is applied and
when it is removed. The two extreme cases are as
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Fic. 5. Two extreme types of strain distribution across column

cross section.

3
9 X
X N
R
~N R
0 2
\g N

Y —3

< . £t he
T _f
%’i Average
¥ Ccm/:resS/‘ve
| Stress
«@)
Actual Slress
Distrib S 2
wrron ¥ £ by
e A — — — — R
4t 4
R ¥

b)
Fic. 6.

follows: First, the column may be compressed to the
critical stress, say, the point 4 on the stress-strain dia-
gram (Fig. 4), and then the disturbance is applied and
immediately removed. As a result, the column sud-
denly bends. Because of the bending, the stress on
the compression side is in the process of loading, fol-

lowing the curve AB, and the stress on the tension
side is in the process of unloading, following the curve
AD. The stress distribution in this case is shown in
Fig. 5a. On the other hand, the disturbance may be ap-
plied during the compression process before the com-
pressive stress reaches the proportional limit and is re-
moved when the load is increased to a value such that
the bent form becomes stable. In this case, compres-
sion and bending proceed simultaneously during the
loading process, and there is no reversal of stress. The
final stress distribution is shown in Fig. 5b.

Denote E;, = do/de the tangent modulus and ¢y =
P/A the stress at the neutral axis 0, Fig. 6a. Accord-
ing to the first process of loading, von Karman’s double
modulus formula can be derived. The derivation is
well known but is briefly outlined here for the purpose
of discussion.

Assuming that plane cross sections of the column
remain plane during bending, the small bending stresses
will be distributed along the depth of the cross section
as shown in Fig. 6a. Since the bending is only slight
in determining the buckling load, the stress curve on
the loading side may be approximated by a straight
line with a slope equal to E,. Eq. (1) becomes

E Jo" ndA + E, il nd4 =0 (13)
and the bending moment is

M = fi omdd = (E/R) Jo" n%dA +
(E/R) Sig n°dA = (1/R)(EL + Edy) (14)

in which I; and I, are the moments of inertia with re-
spect to the neutral axis of the two portions of the cross
section. (£I, + E.,) is usually written as E,I, where
E, = (1/I)(El, + E.I) is the so-called von Kéarméan’s
double modulus. However, it is obvious that the ef-
fect can be better described by writing (El, + E.,) =
EI instead of E,I, since actually both E and I have
been modified instead of changes in E alone. Since
the bending is only slight, EI is approximately a con-

stant throughout the length of the column. Eq. (2)
then becomes
(d*/dx*) + (P/EDy = 0 (15)
and the buckling load is
P, = Cr’EI/L? (16)

This is essentially von Karmén’s double modulus for-
mula except that ET is now written in the place of E,I.
In the case of colums with rectangular sections, it can
be proved that (Fig. 6a),

EI = [4EE/(VE + VE)I (17)

Now let us consider the second process of loading.
Let us again assume that the stress distribution over
the section can be approximated by a straight line, in
other words, we assume the tangent modulus is approxi-
mately constant over the stress range and it can be
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easily proved that the buckling load is given by the so-
called tangent modulus formula as follows:

P, = CrEJI/L* (18)

where £, is the tangent modulus corresponding to the
stress P,/A. The assumption of constant tangent
modulus is usually justified by arguing that the bending
is only slight; however, it would be interesting to see
the influence of such an approximation on the magni-
tude of the buckling load. A better approximation
can be obtained by approximating the stress distribu-
tion curve over the cross section by two straight lines
instead of the usual one straight line, as shown in Fig.
6b. Denoting FE; and E, the tangent modulus corre-
sponding to the stresses at two sides of the neutral

287

axis, the same results can be obtained as in the case of
double modulus theory, merely by replacing E and E,
by E; and E,, respectively. In the general case; the
buckling load is equal to

P, = CrEI/L> (19)

in which EI = (FJy, + E.l,). For columns with rec-
tangular sections,

EI = [AEB/(VEy + VE)I (20)

Write E; = aFE,; E, = bE, where E, as before is the
tangent modulus at o = P,,/4. For most engineering
materials,¢ > land b < 1, and Eq. (20) can be written
as

EI = [4ab/(Va + VB)E] = KE,I
The factor

@1

X = 4ab _ 4(a/b)
Va+ Vb (a/b) + 1+ 2+/a/b

is plotted against a/b for different values of 4 in Fig. 7.
It is seen that, for low values of b which lie in the region
of the “knee” of the stress-strain curve or near the
proportional limit, the factor is likely to be less than
one—i.e., the tangent modulus load is greater than the
actual buckling load. For higher values of b which are
in the region of large stress and strain or near the yield
point, the factor is likely to be greater than one. The
tangent modulus load is, therefore, less than the actual
buckling load. This explains why the tangent modulus

60,000
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F1c. 8. A typical column curve (cf., N.A.C.A. T.R. No. 656).
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theory predicts unconservative values when the buck-
ling stress is near the knee of the stress-strain curves. It
also is one reason why the tangent modulus theory pre-
dicts values that are too low when the buckling stress is
high (Fig. 8).

Theoretically, for a centrally loaded ideal column, if a
small disturbance is applied and immediately re-
moved, the resulting bent form becomes stable when P
is equal to the double modulus load, P4 Referring
to Fig. 3, in this case, P’ is assumed to be applied and
removed when P is equal to P;. Whereas, if during the
loading P’ is applied before P/A reaches the propor-
tional limit and is removed when P is equal to P.,—
i.e., load at which the bent form becomes stable—the
buckling load, P, is close to the tangent modulus load,
P, If the disturbance, P’, is applied after P/A4 is
beyond the proportional limit but below P,;/A4, then
the buckling load would be equal to some value be-
tween P; and P,.

Since the tangent modulus, on which the values of
EI depend, decreases rather rapidly shortly after the
proportional limit is exceeded for most engineering ma-
terials, the effect of plastic deformation on the load is
larger than the effect due to the use of approximate ex-
pression for the curvatures. The load-deflection curve
would, therefore, drop immediately after buckling
starts. It is thus seen that, for an ideal short column,
the buckling load is equal to, or very close to, the ulti-
mate load.

If the testing of an ideal column is possible, there will
always be disturbances in the testing machine during
the loading process, and the double modulus load can
never be obtained. As the magnitude of the disturb-
ance created in a given testing machine is more or less
constant, its effect on bending of columns depends ap-
proximately upon the slenderness ratio L/p. For
short columns with small L/p ratio, the column is rela-
tively insensitive to small disturbances. In such
cases, the column may bend when P/A4 is beyond the
proportional limit and there is actually a reversal of
stresses. The buckling load is, therefore, close to the
double modulus load. For relatively slender columans,
they are more sensitive to a disturbance of the same
magnitude and will bend before the stress reaches the
elastic limit, consequently with no stress reversal. In
these cases, the buckling load is closer to the tangent
modulus load. This effect can be seen clearly in Fig. 8.

SOoUTHWELL'S METHOD AND ITS EXTENSION

Referring to Eq. (11), since P, = n*P,, we have

0 = &/[1 — (P/nP,)] (22)
As P approaches P, we see that
él—> o, @*é, é—ég, etc.
0 02 3 8 8 :

Therefore, 6, > 8, > 8 > ...

1948

By substituting in Eq. (12), it is evident that, if P is
a fairly large fraction of P,, the center deflection §”
is approximately equal to §;—i.e.,

6 = 0 = 61/[1 - (P/Pcr)] (23)

and Eq. (23) is a close approximation of Eq. (12).
The P vs. 6’ curve approximates a rectangular hyper-
bola having the horizontal line P = P, as an asymp-
tote.

Since the deflections measured in testing are usually
referred to the initial position, they are (8’ — §) rather
than §’. Writing § = & — 5, Eq. (23) can be rewritten
as

S5 — & = 51/[<Pcr/P) - 1] (24)
or
Py (8/P) — 5 =& (25)

It is seen that if §/P is plotted against §, when P is near
to P,, the testing results will be approximately a
straight line, and the inverse of the slope of this line is a
measure of the buckling load P,. Timoshenko’ also
shows that this relationship holds true when there is
some eccentricity in applying the load. This is the
well-known Southwell’s method and has been widely
used for estimating the elastic buckling load from test-
ing results. However, because of the happy coinci-
dence that the ultimate load of a column is close to its
theoretical elastic buckling load, it is rather a common
practice to regard the ultimate load as the buckling
load, and the importance of Southwell’s method has
not been properly emphasized. Actually, Southwell’s
method represents a much greater achievement than is
usually recognized. This is because, for imperfect
columns, the buckling load is not defined, and all actual
columns are more or less imperfect; thus, in the strict
sense, actual testing of buckling is impossible. South-
well’s method, however, provides a theoretically sound
basis for analyzing the experimental data—from the
test results of an imperfect column the buckling load of
the corresponding perfect column can be estimated.

In the case of inelastic buckling, Southwell indicated
in his paper that his method would not apply, and it is
so generally accepted.

Let us refer to Eq. (9). If Pisa large portion of the
buckling load Py, in the case of inelastic buckling, it can
be replaced by the following relationship:

[(d2y/dx?) — (d*/dx?)] + (P/ED)y = 0  (26)

Assume that EJ is approximately a constant when P is
close to P,,. Then we have

6,%61 = 51/[1 - (P/Pcr)]

and

I

0y — 51 = Sl/[(Pcr/P) - 1] (27)

It is thus seen that the Southwell’s method can be ex-
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F1c. 9. Calculated load-deflection curves for short columns
(}/p = 75) with various amounts of initial deflection for mild
steel with a yield point = 45,000 Ibs. per sq.in. (cf., von Karman4).

tended into the inelastic region, provided that the as-
sumption of EI being approximately constant can be
justified. As EI depends on the mechanical properties
of the material, the justification of such an assumption
should rely to a great extent on experimental evidence.
The simplest way seems to be to apply the conclusion
to the experimental results. If the experimental re-
sults check with the theoretical prediction, it may be
comnsidered that the assumption is valid. This is done
by applying the extended Southwell’s method to the
classical test results of von K4rman,? the more recent
ones of Gerard, and those of Horsfall and Sandorff 5*
It was found that the resultant plots are good straight
lines, thus confirming the validity of the assump-
tion.

Donnell® indicated that, even for columns buckled
in the plastic range, the first part of the loading is al-
ways elastic. By analyzing the measurements in the
elastic range according to Southwell’s method, the
buckling load can therefore be estimated. This argu-
ment, however, is not satisfactory because the loading
of a column in the elastic range is governed by Eq. (9),
and the solution is given by Egs. (10) and (11), where
P, as obtained by Southwell’s method is Cr2EI/L? and
not Cr*EI/L2 Also, if the buckling load is well in the
plastic range, the readings in the elastic range may be
those that are not the large portions of the buckling
load. Although it will be shown later from the test
results that the rectangular hyperbolic shape of P vs.
d curves is a good approximation, even well in the elastic
range, this agreement can be regarded only as a some-
what fortuitous occurrence.

* When this paper was in preparation, the author received
Horsfall and Sandorff’s report through the courtesy of F. R.
Shanley. It was found that Southwell’s method was used in
their report, but it was indicated there that the use “‘is a liberty
not justified by theory.”
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It may be pointed out that, while the presence of ini-
tial deflection in the elastic case does not materially in-
fluence the ultimate load, the effect of initial deflection
in the inelastic case is much more serious. This is be-
cause, during the process of loading before the deflec-
tion of the column becomes large, the effect of plastic
deformation comes in to cause the ultimate load of an
actual column to be lower than the theoretical buckling
load of the corresponding ideal column. This was shown
by von Karman and is illustrated in Fig. 9. A method
for estimating the buckling load from the experimental
data in this case is even more important than in the
elastic case, since the initial deflection of an actual
column is usually difficult to determine, and, conse-
quently, the accuracy of the test result cannot be
properly estimated. The limitation of Southwell’s
method in this case is thus evident. If the initial de-
flection is too large, the experimental readings may be
in the range where the loading curve is not approxi-
mately a rectangular hyperbola.

As Southwell originally proposed it, his method re-
quires that the initial deflection reading be taken at
zero load. In the vicinity of zero load, deflection read-
ings are usually somewhat questionable. A more
general method is suggested by Lundquist,® where the
initial readings may be taken at any load less than the
critical load. Lundquist proved that (5 — &) vs.
(6 — 81)/(P — Py) is also a straight line, where (§ — &)
is the amount by which the deflections are increased
when the axial load on the column is increased from P
to P 1.

Instead of measuring the center deflections, it is
easier to measure accurately the strains by electric
strain gages. If it is assumed that sections remain
plane after bending, the curvature 1/R of a column at a
given cross section is related to the difference in strain
at two points, ¢ and e, on the particular cross section
according to the equation

f J2d
7

Y. 4 I
EN
X
g
]
3
N
x

%
A

"N vors —]

F1c. 10. Modified ““Southwell plot’’ of the test results of Schuette
and Roy for a slender column.
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TABLE 1

A Comparison Between the Ultimate Load, Euler’s Buckling Load, and the Buckling Load Estimated by Southwell’s Method for
Slender Columns

Slenderness
Column . £, Calculated
No. Ratio, Buckling Load *
1 175.8 3,790
2 146.0 5,475
3a 116.2 8,645
3b 116.1 8,610
4a, 103.0 10,980
4b 103.5 10,920
5 95.3 12,780
6 91.3 13,980

Ratio of

Buckling Load Estimated Value

Estimated Ultimate to Theoretical
from Test Load, Kg. Value
3,710 3,770 0.980
5,453 5,430 0.995
8,590 8,630 0.994
8,758 8,750 1.017
11,220 11,160 1.022
11,090 10,860 1.015
12,815 12,5620 1.003
13,750 13,580 0.984

* Calculated from Euler’s formula by using the actual value of Young’s modulus measured by von Karman, i.e., 2,170,000 kg. per

sq.cm.

TABLE 2

A Comparison Between the Ultimate Stress, Theoretical Buckling Stresses, and the Buckling Stress Estimaterd by Southwell’s Method
for Short Columns

Effective ~———Calculated Buckling Stress Buckling Stress
Slenderness Tangent modulus  Double modulus Estimated Ultimate
Column No. Ratio, (L/p)e theory theory from Test Stress
von Karman* Kg. per sq.cm. Kg. per sq.cm. Kg. per sq.cm. Kg. per'sq.cm.
7a 88.1 2,400 2,690 2,780 2,760
b 88.0 2,400 2,690 2,780 2,685
8 82.0 2,600 2,900 2,740 2,740
9a, 73.1 2,960 3,050 3,050 3,030
9b 73.1 2,960 3,050 3,105 2,866
10a 58.6 3,100 3,150 3,240 3,185
10b 58.6 3,100 3,150 3,130 3,080
11 53.6 3,120 3,175 3,270 3,165
12a 48.2 3,130 3,210 3,110 3,080
12b 48.2 3,130 3,210 3,050 2,960
13 47.3 3,140 3,215 3,100 3,060
14b 38.2 3,160 3,320 3,480 3,320
15a 28.8 3,220 3,560 3,700 3,395
16 24.8 3,290 4,100 3,900 3,890
17 22.0 3,450 Approx. 4,500 4,330
4,600
Gerard t ~ Lbs. per sq.in. Lbs. per sq.in. Lbs. per sq.in. Lbs. per sq.in.
1 21.7 41,900 47,500 44,900 44,880
2 21.2 43,000 49,000 48,600 48,150
Lbs. per sq.in. Lbs. per sq.in. Lbs. per sq.in. Lbs. per sq.in.
Horsfall and
Sandorfi f 29.9 37,000 42,000 37,600 37,200
* Mild steel columns.
t 24S-T aluminume-alloy columus.
1/R = (& — e)/t = (d*/dx®)(y — o) (28) APPLICATION OF EXPERIMENTAL RESULTS

where ¢ is the width of the column across which the
strain gages are attached. Differentiating Eq. (10)
twice and combining it with Egs. (24) and (28), the
difference in strain measurements at the center of the
column is

Ae = @ — & = &i(x/L)%/[(P/P) — 1]  (29)

when P is near to P;. It is thus seen that, if Ae/P is
plotted against Ae, the resultant will also be a straight
line. This is confirmed by the test resultst of Schuette
and Roy' in the elastic case (Fig. 10) and by the test
results of Gerard in the inelastic case (Fig. 12).

t These results were not given in the original report. The
author is indebted to Dr. E. E. Lundquist of N.A.C.A. for his
kindness in supplying the test data.

In order to test the proposed method of analysis, it
is necessary to have related test values of load and cen-
tral deflection for columns that have been loaded as
centrally as possible. As was done by Southwell to
test his method in the elastic range, von Karméan’s
test results in the inelastic range are first to be analyzed.

Von Karméan took special precautions to ensure ex-
act centering of his applied loads, and for each column he
tabulated his observations of load and deflections dur-
ing the progress of the test. He classified his columns
in three groups—described, respectively, as slender,
medium, and thick. Slender columns are those having
an L/p ratio greater than 90, and the buckling stresses
of those are in the elastic range. Medium columns
are those having an L/p between 45 and 90, correspond-
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INELASTIC COLUMN

ing to those having their buckling stress between the
proportional limit and yield point. Thick columns are
those for which L/p is less than 45 and the buckling
stresses of which are greater than the yield stress of the
material. p is the radius of gyration of the cross-sec-
tional area of the column.

The test data of the “slender” columns have been
analyzed by Southwell. The buckling loads for the
ideal columns thus estimated are listed in Table 1 as
compared with the Euler’s theoretical buckling loads
and the ultimate loads for the actual columns.

The “medium” and “thick” groups of the test data
are now to be analyzed. Instead of working with the
buckling load, it was felt that working with the buck-

ling stress was more convenient in these cases. Eq.
(24) can be replaced by the following expression:
6 = &/[(c/0) — 1] (30)

where ¢ = P/A4 and o,, = P, /A. 1t is assumed that
the cross-sectional area of the column remains constant
with an increase of load. §/¢ is plotted against & in
Figs. 11a and 11b. Except for columns 14a and 15b,
where the recorded data are too few for such an analy-
sis, it is seen that the test data lie closely on the cor-
responding straight lines, thus confirming the applica-
bility of the method. The buckling stresses so deter-
mined are listed in Table 2. The buckling stresses cal-
culated by the tangent modulus formula and the
double modulus formula, as well as the ultimate stresses
of the actual columns, are also tabulated in Table 2
for comparison. The buckling stresses as computed
by the double modulus formula were computed by von
Kéarman. The computation of the buckling stresses
by the tangent formula is based on the average tangent
modulus given by von Karmén. It is seen that some
of the buckling stresses so estimated are greater than
the corresponding double modulus stresses. This is
probably because the moduli used in the computation
are the average values rather than the actual values for
the particular specimens. A typical stress-strain curve
tested by Gerard is shown in Fig. 13, and the variations
of the moduli of a particular specimen to the average
values can be large.

In order to test the proposed procedure still further,
Gerard, formerly of the Republic Aviation Corporation,
has kindly supplied the author with the test data of two
24S-T aluminum-alloy columns of rectangular cross
sections (approximately 1!'/4 by !/ in.). The columns
were designed to fail in the plastic range and were manu-
factured with great care to ensure as little initial curva-
ture as possible. The specimens were tested flat-
ended and were equipped with three electric resistance-
type wire strain gages opposite each other on the wider
sides, one pair being at the mid-section and the other
two near the estimated inflection points. Referring
to Egs. (12) and (23), it is seen that, as load is in-
creased, the column will bend approximately into a sine
curve, because the first harmonic becomes large and
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other harmonics are little magnified by the load. Points
of zero curvature can be approximately determined by
passing a sine curve through Ae readings opposite each
other along the length of the column. The effective
length of the column is then the distance between these
points of zero curvature or the inflection points. The
test data are plotted in Fig. 12. Itis seen that the test
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F1c. 14. Lundquist’s modified form of ‘“‘Southwell plot’’ of the
test results of Horsfall and Sandorff for a short column.5

points lie closely on the respective straight lines. The
buckling stresses so determined are listed in Table 2,
together with the theoretical values and the ultimate
stresses.

Another set of accurately measured data is that of
Horsfall and Sandorfl,’ of Lockheed Aircraft Corpora-

tion. Their data are plotted according to Southwell’s
method modified by Lundquist. The result is repro-
duced here as Fig. 14 and offers further evidence to the
validily of the method. The test procedures are de-
scribed in detail in references 2 and 5.

It is interesting to note from the results in Table 2
that all the buckling loads estimated by Southwell’s
method are either equal to, or greater than, the corre-
sponding ultimate loads, as they should be in these
cases.
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