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F I G . 8. Rigid blade mode and static mode of rotating blade at 
o) = 223 r.p.m., beamwise. 
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F I G . 9. Beamwise natural modes, (a) Fundamental mode, (b) 
second mode, (c) third mode. 

undamped hinge moment MH. The moment that 
must be supplied at the hinge to shake the blade tip 
with unit amplitude is — MH — jMd, and has the mag
nitude 

VMH* + Md* 9fTC (28) 

The hinge slope cpH is plotted vs. v in Fig. 6; 9fT£ and, 
for comparison, also MH and Md, with signs disregarded, 
are plotted in Fig. 7a (nonrotation) and Fig. 7b (rota
tion at 223 r.p.m.) for a damping constant of D = 400 
Ib.ft. per rad. per sec. 

9fTC is always equal to, or larger than, MH and Md. 
Points of tangency occur only where <pH or MH vanish. 
It is noted for the rotating blade that up to about v = a> 
the damper absorbs little vibration. Nevertheless, 
this small damping plays an important role in prevent-| 
ing ground vibrations. At the higher resonance fre
quencies Md is extremely effective in limiting the vibra 
tion amplitudes to small values. It is noted that thel 
resonance frequencies (9TC = minimum) are almost| 
entirely unaffected by the presence of the damper 
(For exceedingly large damping constants, not achiev 
able in practice, this would no longer be true.) The! 
same is found true also for the deflection curves, 

BEAMWISE NATURAL MODES 

In Fig. 8 the rigid mode, p0 = co, and the static de
flection curve, v = 0, are shown for the rotating blade. 
The first, second, and thud beamwise natural modes, 
nonrotating and rotating at 223 r.p.m., are shown in 
Figs.' 9a-9c. The discrepancy between the rotating^ 
and the nonrotating modes seems to increase with thd 
order of the mode.* 

* A somewhat different conclusion is reached by Simpkinson, 
Eatherton and Millenson,5 for cantilever blades. 
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Letter to the Editor 

Dear Sir: 

The following notes were suggested by Professor Wang's paper 
f 'Inelastic Column Theories and an Analysis of Experimental 
Observations" (JOURNAL OF THE AERONAUTICAL SCIENCES, May, 
1948). 

In Eqs. (16), (18), and (19) the "coefficient of fixity" was used 
as a multiplying factor for the critical column load in the inelastic 
ran^re. If C were actually used in this manner, the predicted 

loads would be much too high. I t is unfortunate that the coeffi 
cient of fixity was ever introduced into the column literature] 
Since end restraint reduces the effective column length, its effect 
should be taken care of by a factor that operates on the columrj 
length, not on the load or stress. Such a factor has been used b^ 
many authors, in the form, k = L0/L. I am heartily in favor oj 
dropping C entirely and substituting an effective length factor) 
(Incidentally, I can claim priority over Wang on this error, hav
ing done the same thing in my book, Basic Structures!) • 
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L E T T E R T O 

The second point concerns the use of the term "neutral axis." 
[n his 1909 thesis von Karman pointed out (in a footnote) that 
:he neutral axis as he used it was not "stress free," since axial 
compressive stresses were also acting over the entire cross sec-
:ion. If the curve of actual stress distribution is known, the 
'neutral axis" is found at the point of intersection of this curve 
with a horizontal line representing the average axial stress. For 
:he elastic case this coincides with the neutral axis for pure 
sending, but in the inelastic case it does not; neither does it 
letermine the location of the resultant axial force for a constant 
stress distribution (this remains at the centroid). If the bending 
s» permitted to proceed simultaneously with the increase of axial 
oad, the "neutral axis" will not be stationary but will move 
iway from the centroid as the loading increases. The only 
physical meaning that could be attached would be that it de-
:ermines a line along the length of the column for which there is 
10 change of axial stress. But this requires the assumption of a 
constant average axial stress during bending, the very assumption 
:hat is now agreed to be wrong and on which the double-modulus 
:heory was based. I t would seem desirable to restrict the defini
tion of the term "neutral axis" to pure bending. This would 
:orce realization that its use in combined bending and axial load-
ng involves treating the bending separately. 

Professor Wang has attempted to improve the simple tangent 
nodulus formula by introducing two modulii, one higher and 
3ne lower than the tangent modulus. This is done to obtain 
i better approximation to the true stress distribution. These 
nodulii are then used in the original double-modulus formula, 
igain introducing the original assumption of a neutral axis. 
Furthermore, the use of two modulii aEt and bE% requires a 
'urther assumption as to how much differential strain (bending) 
s involved. If we use the idealized column as a basis for analysis, 
we must assume, as Wang has assumed, an "infinitesimally 
small" disturbance. This implies that the differential strain 
ipproaches zero as a limit, bringing us back to the tangent 
nodulus again. 

From the correspondence that followed the publication of my 
paper, "Inelastic Column Theory," I can see that much of the 
iifficulty associated with buckling theories comes from a con
tusion of "orders of abstraction" (to borrow a term from Kor-
sybski's Science and Sanity). Since it is impossible to analyze 
in actual column, we must create a mental picture or abstrac-
:ion tha t may be more or less idealized. The so-called ideal, 
centrally loaded column in the elastic range represents a high 
Drder of abstraction and leads to the original Euler formula. A 
closer approach to reality is obtained by replacing the elastic 
nodulus by the tangent modulus, but the idea of the "perfect" 
column is still retained. The degree of eccentricity or disturbance 
mat must be assumed in such an analysis is truly infinitesimal; 
.t is of the order of the disturbance needed to upset a needle if 
ive could succeed in making it stand on end! The introduction 
}f a finite eccentricity or "disturbance" places the problem on 
in entirely different level of abstraction. I t must then be 
ittacked by methods similar to those used by von Karman in 
lis 1909 paper. Most of the arguments about the effects of 
small eccentricities on the "column theory" can never be resolved 
Decause they are not arguments at all, simply confusions of the 
orders of abstraction involved. 

T H E E D I T O R 503 

Reduced Interaction Curves for Combined Bending and Axial Loading 

Fig. 15 

I do not believe that any additional theories or modifications 
are needed to explain the fact tha t test values often exceed the 
values predicted by the tangent modulus theory in the region 
above the knee of the stress-strain diagram. The remarks 
about Fig. 10, in my original paper, together with Dr. von 
Karman's discussion, should make this quite clear. By the 
same reasoning, it can be seen that , in the region of the knee of 
the stress-strain diagram, where the tangent modulus decreases 
rapidly with increasing strain, the inevitable initial eccentricities 
and imperfections will have their largest effect and test data 
will tend to fall below the tangent modulus values. 

Finally, I should like to suggest that the problem of finite 
eccentricities be attacked by an entirely different engineering 
procedure, the use of the interaction curve for combined axial 
loading and bending. In a recent A.S.C.E. paper ("Applied 
Column Theory," not yet published) I showed how this could be 
done by adding lines of constant eccentricity ratio to an inter
action chart. This method covers the entire range from pure 
axial loading to pure bending, is dimensionless, and can be re
duced to a simple form as shown herein by Fig. 15 from the 
above paper. This chart is based on N.A.C.A. Technical Note 
No. 307, in which the tests were made by transverse loading a t 
the third points. For eccentric columns (bending moment ap
plied at ends) the curves would show more sag. I am now at-
tempting to collect test data on eccentric columns for which the 
bending modulus of rupture has also been determined and would 
appreciate receiving any information of this type. 

F. R. SHANLEY 

Consultant on Structures 
Los Angeles, Calif. 
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