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where rQ is the distance from the body axis to the interface, t de­
notes dimensionless time, and Fx deceleration force. The simpli­
fied form of the energy equation (3) is obtained by approximating 
the convection terms by their limiting form, vco(dT/dy)f for large 
y where convection is important; near the interface, conduction 
is assumed to be dominant. 

The essential unsteady character of the problem can be noted 
from the energy equation; without the unsteady effects the tem­
perature could not be bounded at infinity if liquid accumulated 
{vm > 0) at some position. Careful examination of the pres­
sure, shear, and deceleration forces for bodies whose surfaces be­
come parallel to the flight direction shows tha t after some posi­
tion on the body the deceleration force becomes uniform and 
dominates all the other forces. The liquid layer everywhere 
downstream of this position behaves like a heated semi-infinite 
slab that is characterized by unsteady effects. These considera­
tions mark the first important deviation from existing work on 
this problem. 

Two parameters characterize the problem. The one in the 
last term of the momentum equation (2) is essentially the inverse 
of a Froude number and represents the ratio of deceleration and 
pressure (or viscous) forces; deceleration effects become signifi­
cant when this parameter is not small. The other parameter, 
which appears in the energy equation (3), represents the char­
acteristics of the particular liquid and gives the relative influence 
of convection and conduction. 

Liquid layer outer-boundary conditions are obtained from the 
gas boundary-layer characteristics of Cohen and Reshotko.4 

The body shape [see Fig. 3(a)] is thus limited to the class for 
which that analysis pertains. The correct interface temperature 
Ti is selected to give a consistent energy balance between the 
gas and liquid layers; the velocity components and shears are 
also matched. Boundary conditions for the liquid layer thus 
are: v = — v0, du/dy — (R/h)(Ti/Pm) at the interface (y = 0), 
and T — 0, u — 0 at the solid surface (y = °°), where n denotes 
the shear at the interface. Initial conditions specified are u = 
v=T = 0a,tt = 0. In the calculated example, a first approxi­
mation to Ti is used; viz., Ti = const. Although not investi­
gated, we assume tha t improvements by iteration are possible 
and ignore this herein so that the other effects can be most simpty 
shown. 

Taking the viscosity-temperature relation to be /J = 
fj,i exp [b(x)y], we can write the solutions explicitly as 

T 
ev erfc 

(e-»/b)[fy + (f/b) + fi] 

Y + ẑ  ") + erfc ( ^ 1 
(4) 

(5) 

where 

fi = (R/h)(n/Pm), v = Pr Reih/RYv^y, 

Y = y/Vt, Z = Pr Re(h/R)2vmVt 

At each position x along the body an iteration procedure based 
on matching the assumed viscosity-temperature law with the 
actual one for Pyrex1 at two points is used to determine b(x) and 
vn(x). 

The liquid layer development with no deceleration can be seen 
in Fig. 1. Negative values of vm indicate a thinning of the liquid 
layer. Thus, liquid flows away from the stagnation region and 
tends to accumulate downstream because the shear and pressure 
decrease. At some later time the thicker layer results in a 
greater pressure force, and the liquid is moved rearward in a 
wavelike pattern. In proceeding downstream from the stagna­
tion region with a deceleration force, however, we found that 
after some time our calculation procedure failed at some point. 
I t was felt that, among other reasons, this occurred because the 
forward integration could in no way be influenced by upstream 
flow due to the deceleration force. Accordingly, asymptotic 
(in x) forms of the basic equations were integrated by the same 
procedure starting at the rear of the body. The effect of the 
deceleration force (for pFxR/Pm — —0.1) can be seen in Fig. 2. 
The liquid no longer continues downstream but accumulates at 
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F I G . 3. (a) Top: Body shape, (b) Bottom left: Velocity. 
(c) Bottom right: Temperature. 

some point on the body. The inhibition of downstream liquid 
flow results in more effective heat shielding by the layer. I t is 
noteworthy that fortuitously vm computed from the front and 
the rear for 1.45 sec. match smoothly. Representative profiles 
a t different body stations for this case are shown in Fig. 3. Flow 
reversal and upstream flow at the back end due to the body force 
are clearly evident from the velocity distributions. Although 
the temperature profiles look quite similar at this relatively short 
time, their slopes at the interface indicate relatively higher heat 
transfer into the layer in the stagnation region (£ = 0) with the 
lowest heat transfer at the position of maximum vm(^ = 0.6). 
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SYMBOLS 

E = elastic modulus 
Er = reduced modulus 
Et = tangent modulus 
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E = general ized inelas t ic modu lus 
/ = m o m e n t of iner t ia 
L = l e n g t h 
Me = ex te rna l bend ing m o m e n t 
Mi = in t e rna l b e n d i n g res i s tance 
P = axial compress ive load 
w = l a t e ra l deflection 
w = in i t ia l l a t e ra l imperfec t ion 
p = r a d i u s of gy ra t i on 
a a = axial compress ive s t ress 
(rcr = compressive buckling stress 

INTRODUCTION 

EXPERIMENTAL RESULTS on aluminum-alloy columns led 
Shanley1 to re-examine the basic assumptions of inelastic 

column theory in a now classic paper published in 1947. He 
concluded that if axial straining and bending proceeded simul­
taneously at buckling, no strain reversal would occur and, there­
fore, the tangent modulus is the correct effective modulus for in­
elastic buckling of a perfect column. Shanley's analysis of an 
idealized type of inelastic column indicated that a continuous 
spectrum of possible bent configurations exists for which the 
lateral deflections increase from zero at the tangent-modulus 
stress to infinity at the reduced-modulus stress. Thus the tan­
gent-modulus stress is the lowest value at which a bent configura­
tion becomes stable and, therefore, can be considered as the 
buckling stress. 

In commenting on Shanley's contribution, von Karman1 indi­
cated that the reduced modulus is correct when the stability 
analysis is based on the requirement that the axial load remain 
fixed at the exchange of equilibrium configurations. He con­
tended that because of the nonreversible character of inelasticity, 
it is necessary to revise the definition of the stability limit. Thus, 
for inelastic buckling, we should seek" . . . the smallest value of 
the axial load at which bifurcation of the equilibrium positions 
can occur, regardless of whether or not the transition to the bent 
position requires an increase of the axial load." From this 
definition, the tangent-modulus buckling stress originally pro­
posed by Engesser is the correct solution. 

The analysis presented in this paper utilizes Shanley's con­
cept that axial straining and bending proceed simultaneously 
without strain reversal in the development of tangent modulus 
theory. However, it is not assumed that this concept applies to 
a perfect inelastic column, nor is it required that the definition of 
the stability limit be revised for inelastic buckling. Instead, the 
theory of an imperfect inelastic column (imperfect in a geometric 
sense) is developed in which case the assumption that axial 
straining and bending proceed simultaneously without strain re­
versal is completely rational. 

ANALYSIS OF COLUMN T Y P E S 

Since the pertinent differential equations involve equilibrium 
of bending moments, we shall be particularly interested in the 
external bending moment, Me, and the internal bending resist­
ance, Mi for the four column types: perfect and imperfect elastic 
columns, perfect and imperfect inelastic columns. Only in­
finitesimal lateral deflections are considered because we are con­
cerned here with the buckling behavior. 

The usual relations for the bending moments are listed in 
Table 1 where w is the lateral deflection of the column always 
measured from the initial position, id. For perfect columns, of 
course, w = 0. 

Although the values of M-b given in Table 1 are familiar, it 
should be noted that for the perfect inelastic column, Er is based 
on the assumption that bending starts at buckling under a fixed 
axial load and, therefore, a strain reversal occurs. On the other 
hand, for the imperfect inelastic column, axial loading and bend­
ing proceed simultaneously from the start due to the geometric 
imperfection. Hence, the tangent modulus is appropriate in this 
case. 

In all cases, we seek a solution of the equilibrium equation 

(d2w/dx2) + (a/EP
2)(w + w) = 0 (1) 

TABLE 1 

Column Type 

perfect elastic 
imperfect elastic 
perfect inelastic 
imperfect inelastic 

Me 

Pw 
P(w + w) 
Pw 
P(w + id) 

Mi 

-EI(d2w/dx2) 
-EI(d2w/dx2) 
-ErI(d

2w/dx2) 
-EtI(d

2w/dx2) 

Gcr 

TT2EP
2/L2 

TT2EP
2/L2 

7T2Erp
2/L2 

ir2Etp2/L2 

For perfect columns, w — 0, and therefore the solution is deter­
mined for characteristic values of a as given in Table 1. For 
imperfect columns, the initial geometric imperfection can be con­
veniently represented by 

w = 2_j wn sin (n w x/L) (2) 
n = 1 

Similarly, the lateral deflection for a simply supported column 

w = 2-J wn sin (n ir x/L) (3) 
n = 1 

By carrying out the analysis for the imperfect inelastic column, 
it can be determined that 

L °"a J 

As the axial compressive stress <ra approaches ir2Etp
2/L2, which 

can be identified as the limiting value of axial compressive stress, 
(Tcr, for this case, the n = 1 term dominates Eq. (3). In addition 
as <ya approaches acr, the tangent modulus becomes substantially 
constant. 

Thus, in the region of buckling, the lateral deflection at the 
center of the column is approximated by 

W/Wi = [(<Tcr/<ra) — I ] - 1 ( 5 ) 

where ac.r = ir2Eip2/L2 (6) 

For the imperfect elastic column, Et = E and Eq. (6) reduces to 
the familiar Euler equation as indicated in Table 1. 

COMPARISON OF SOLUTIONS 

At this point, it is most interesting to compare the solutions for 
perfect and imperfect columns. In the elastic case, the limiting 
axial compressive stress for a column containing small initial 
geometrical imperfections is identical with the buckling stress 
of a corresponding perfect column as shown in Table 1. 

In comparing the inelastic solutions given in Table 1, however, 
the buckling stress of a perfect column is always higher than the 
limiting axial compressive stress of an imperfect column, Eq. (6). 
Since the latter represents the buckling stress of a column with 
vanishingly small initial imperfections, the tangent-modulus 
buckling stress can be considered as the correct theoretical in­
elastic generalization of the Euler stress. On the basis of experi­
mental evidence, it has so been considered for a long time. 
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SYMBOLS 

h = enthalpy 
k = thermal conductivity 
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