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SUMMARY 

The action of a column in the plastic range is analyzed on the 
basis that bending may proceed simultaneously with increasing 
axial load. This leads to a new column formula tha t includes 
both the tangent-modulus (Engesser) and the reduced-modulus 
(von Karman) formulas. I t is shown that bending begins at 
the tangent-modulus load and tha t the column load increases 
with increasing lateral deflection, approaching the reduced-
modulus load as a limit if the tangent modulus is assumed to 
remain constant. 

* INTRODUCTION 

IN A RECENTLY PUBLISHED PAPER,1 t h e a u t h o r 

stated that the reduced-modulus (or double-
modulus) theory is not correct for predicting the 
maximum load up to which a perfect column will 
remain straight. This is because it is possible for the 
column to bend simultaneously with increasing axial 
load. Under such conditions it is possible to have 
bending without introducing any strain reversal, 
upon which the reduced-modulus theory depends. 
In reference 1 it was stated that the column will begin 
to bend as soon as the axial load exceeds the value 
predicted by the tangent-modulus (Engesser) theory. 
I t appeared likely that the Engesser load could be 
exceeded but that the reduced-modulus load could not 
be reached. In this paper it will be shown that for an 
idealized simplified column, this is actually true. 

The three basic column formulas may be written as 
follows (assuming pin ends and zero eccentricity) : 

(Euler) Pe = T2EI/L2 
(1) 

where 

(Engesser) Pt = ir2EtI/L
2 

(reduced PT = ir2ErI/L
2 

modulus) 

(2) 

(3) 
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* Division Engineer, Engineering Research. 

P = critical load 
I = moment of inertia of column cross section 
L = column length 
E = Young's modulus (slope of stress-strain dia

gram in elastic range) 
Et = tangent modulus (local slope of stress-strain 

diagram in inelastic range) 
Er = reduced modulus (an effective value lower 

than E and higher than Et) 

Eqs. (1), (2), and (3) differ only in the value used 
for the effective modulus of elasticity. Since the 
Euler equation applies only in the elastic range, the 
problem of column action in the inelastic (plastic) 
range centers around Eqs. (2) and (3). An excellent 
summary of the history of these two theories is given 
in reference 2, from which the following is quoted: 

"What is here called the double-modulus theory has 
frequently been called also the Considere-Engesser 
theory and Karman's theory. Many competent engi
neers are mistaken as to the origin of the theory, and 
a brief account of its development will not be out of 
place. In 1891 there was published a memoir included 
as an appendix (annexe) to the proceedings of the 
Congres International des Procedes de Constructions, 
held in Paris from the 9th to the 14th of September, 
1889, in which A. Considere pointed out that, as an 
ideal column stressed beyond the proportional limit 
begins to bend, the stress on the concave side increases 
according to the law of the compressive stress-strain 
diagram, and the stress on the convex side decreases 
according to Hooke's law, and that therefore the 
strength would be given by 

P = TT2EI/L2 

in which E is a modulus, the value of which lies between 
the modulus of elasticity and the tangent modulus. 
Considere realized that E was a function of P/A, the 
average stress in the column, but did not go further 
than to point out this fact. 
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F I G . 1. Column theories and test data (Alcoa). 
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F I G . 2. Column theories and test data (Van den Broek). 

F I G . 3. Pin-end column test arrangement. 

"Earlier in 1889 Fr. Engesser presented his tangent-
modulus theory, and in 1895 Felix Jasinski ('Noch ein 
Wort zu den Knickfragen,' Schweizerische Bauzeitung, 
Vol. XXV, No. 25, p. 172, June 22, 1895) pointed 
out that this theory was not correct and called attention 
to Considered work. He stated that at that time it 
was impossible, however, to determine theoretically 
the form of the function E. Thereupon Engesser 
('Ueber Knickfragen/ Schweizerische Bauzeitung, Vol. 
XXVI, No. 4, p. 24, July 27, 1895) acknowledged the 
error in his original theory and replied that the possi
bility of determining E theoretically was in no wise 

out of the question, and he determined it in the general 
form. . . . . Nothing further was done apparently 
until Karman ('Untersuchungen iiber Knickfestigkeit/ 
Forschungsarbeiten, Nr. 81, 1910) presented the theory 
again, added the actual evaluation of E for the rectangu
lar cross section and the idealized iJ-section (consisting 
of infinitely thin flanges and negligible web), and gave 
the theory new life by making a series of careful tests 
designed to afford a check on the theory. Since then 
E has been evaluated for other cross sections by a num
ber of writers." 

Although the reduced-modulus (or double-modulus) 
theory has long been accepted as the exact theory of 
column action, the simpler tangent-modulus theory 
has been found to be much easier to use, since it is 
not affected by the shape of the cross section. Since 
it gives lower critical loads than the reduced-modulus 
theory, it is also preferred by engineers on the basis 
of safety. Finally, test data indicate that the actual 
buckling loads are usually closer to the tangent-modulus 
values than to the reduced-modulus values. A typical 
example is shown in Fig. 1, which is reproduced from 
reference 3 (tests by the Aluminum Research Labora
tories). Reference 4 also shows test data that agree 
with the Engesser theory. Fig. 2 is based on Fig. 4 
of this reference, which includes a number of tests 
made by Professor Van den Broek. 

TEST DATA 

In an effort to obtain a clue, the author had a simple 
test performed by the Lockheed Research Laboratory. 
A pin-ended 24ST aluminum-alloy column of rectangu
lar cross section (2 by l1/* in.) was designed to fail in 
the plastic range and was equipped with electric strain 
gages on opposite sides, at the mid-section (Fig. 3). 
(Details of the test are omitted here but are reported 
in reference 5.) 

The results obtained are plotted in two different 
ways in Figs. 4 and 5. 

Fig. 4 shows that the strain distribution remained 
substantially constant up to a load of about 40,000 lbs. 
and then gradually shifted, indicating bending. Up 
to a load of about 87,000 lbs. there was no strain re
versal. Further loading caused strain reversal to take 
place. At the maximum load of 92,500 lbs., con
siderable strain reversal had taken place and the axis 
of rotation of the cross section appeared to be at about 
one-third of the width of the column. 

Fig. 5 shows the strain on opposite sides of the 
column plotted against load. The slight divergence 
corresponds to an initial eccentricity of about 0.001 in. 
If the column were perfect and remained straight up 
to the reduced-modulus load, the two curves would 
coincide and would be represented by the dashed 
line OA. (The upward curvature reflects the shape 
of the compression stress-strain diagram.) Point B 
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.014 

F I G . 4. Strain distribution as determined in a column test. 
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* F I G , 5. Strain on opposite faces of column from test data. 

represents the upper limit as predicted by the tangent-
modulus theory. 

Fig. 5 shows that if the column were to remain 
straight up to the reduced-modulus load there could 
be no strain reversal below that load. What, then, 
can supply the extra effective value of E needed to 
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F I G . 6. Alternative types of strain distribution across column 
cross section. 
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F I G . 7. Type of strain distribution needed to permit loading 
beyond tangent-modulus load. 

prevent buckling beyond the tangent-modulus load? 
The obvious answer is that the column cannot remain 
straight beyond the tangent-modulus load; there 
must be a definite amount of strain reversal as soon 
as the load is further increased. This should cause 
the two curves to separate at point B, one starting 
downward and the other upward. 

I t c^n now be seen that in the derivation of the 
reduced-modulus theory a questionable assumption 
was made. It was assumed, by implication at least, 
that the column remains straight while the axial load 
is increased to the predicted critical value, after which 
the column bends, or tries to bend. Actually, the 
column is free to "try to bend" at any time. There 
is nothing to prevent it from bending simultaneously 
with increasing axial load. Under such a condition it 
is possible to obtain a nonuniform strain distribution 
without any strain reversal taking place. The differ
ence between the two assumptions is shown, diagram-
matically in Fig. 6. 

Fig. 6b, however, still represents a paradox. There 
is no strain reversal indicated; hence, the value of 
Et must apply over the entire cross section; therefore, 
the column load cannot exceed the tangent-modulus 
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FIG. 8. Alternative types of strain progression. 

value. If the load is to go any higher, some strain 
reversal must begin at the tangent-modulus load. 
The picture might then look something like Fig. 7, 
in which each succeeding increment of loading beyond 
the tangent-modulus load causes some additional strain 
reversal. The fact that this picture resembles the 
actual distribution shown in Fig. 4 is significant. 
(NOTE: These statements do not necessarily apply 
to the entire length of the column, since the ratio of 
bending moment to axial load varies from end to 
end.) 

Another way to visualize the two different theories 
is shown in Fig. 8, in which the points represent condi
tions on opposite edges of the column. In the reduced-
modulus theory it is assumed that the points stay to
gether until the critical load is reached (Fig. 8a). Fig. 
8b shows that they may separate without involving 
any strain reversal. Since the average stress in Fig. 
8b is greater than that corresponding to the tangent-
modulus theory, it represents an impossible condi
tion. Fig. 8c shows what would have to happen if 
the average stress were to exceed the tangent-modulus 
value. 

On the basis of the foregoing reasoning the author 
predicted, in reference 1, that (a) bending will begin 
as soon as the tangent-modulus load is exceeded; 
(b) the maximum column load will be reached some
where between the loads predicted by the two theories. 

MATHEMATICAL ANALYSIS 

In order to prove the last statement, for at least 
one case, the problem has been greatly simplified by 
adopting a suggestion made by E. I. Ryder, of the 
Civil Aeronautics Authority. This consists in working 
with a two-legged hinged column in which the hinge 
consists of a unit ' 'cell" formed from two small axial 
elements. As shown in Fig. 9, the two legs of the 
column are assumed to be infinitely rigid. If the 

dimensions of the unit cell are sufficiently, small with 
respect to the column length, L, it can be assumed 
that there is a simple hinge action about the center of 
the cell. This device reduces the problem to ele
mentary form by eliminating the mathematical work 
involved in integrating over the cross section and over 
the length of the column. 

As shown in Fig. 9, the two elements of the column 
cell are assumed to have deflected in opposite directions 
through the distances e\ and e2) which may be regarded 
as the strains that occur after the column starts to 
bend. If ei and e2 are assumed to be equal and opposite 
in sense (as shown in Fig. 9), pure bending is indicated. 
This restriction will not be applied, however; e± and e2 

may have different values, indicating combined bend
ing and variation in axial load. 

The critical load for such a column is easily deter
mined by equating external and internal bending 
moments. The lateral deflection, d, is first expressed 
in terms of strain : 

d = T = A 2 + 2 M (ei + e^ (4) 

The external bending moment at the hinge is 

Me = Pd = (PL/4) (ex + et) (5) 

The axial load in each flange element, due to bending, is 

Pi = e,&(A/2)\ 
P2 = e2£2(^/2)/ (6) 

Note that Ei and E2 indicate the value of E which is 
considered to be effective for each flange element. 

The internal bending moment (about the hinge 
point) may be expressed as 

FIG. 9. Simplified two-flange column. 
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INELASTIC C O L U M N T H E O R Y 

1 1 1 A 1 A 
Mi = 2 p i + 2Pl = 2 6lEl 2 + 2 ^ 2 = 

A 
(e& + e2E2) (7) 

Equating internal and external bending moments 
[Eqs. (5) and (7)], 

(PL/4)(* + e2) = (A/4)(e1E1 + e2E2) 

from which 

P = (A/L)[(e1E1 + e2E2)/(ei + e2)] (8) 

Now in either the Euler or Engesser equations Ei = 
E2. Eq. (8) therefore reduces to the following two 
equations: 

(Euler) Pt = AE/L 

(Engesser) Pt = AEt/L 

(9) 

(10) 

If it is now assumed that element (1) undergoes 
increasing compressive stress while element (2) has a 
decreasing compressive stress, Ei and E2 may be 
replaced by Et and E, respectively. 

Let k = E/Et. Then 

Ex = Et 

E2 = kEt 

Substituting in Eq. (8), 

P = (AEt/DK* + ke2)/(ei + ei)] (11) 

This is the same as the Engesser formula except 
for the added term, which will now be further exam
ined. 

From Eq. (4) 

ei + e2 = 4:d/L 

and 

ei = 4d/L — e2 

Substituting these values in Eq. (11), 

AEt L [(4d/L) - e2 + ke2)] 

(12) 

P = 

L 

AEt 

L L 

U 

Ad 
- 1)*] (13) 

Another expression for P may be obtained by assum
ing that, after the tangent-modulus load is reached, 
the column load continues to increase. This increase 
is given by the difference between the element 
loads P\ and P2, which can be expressed, from Eq. (6), 
as 

AP = Px - P2 = exEi.(A/2) - e2E2(A/2) 

Substituting for Ei and E2) 

AP = (4/2)£,(*i - ke2) 

Substituting for eh 

(14) 

This value should be added to the tangent-modulus 
load to obtain the total value for P . 

P = Pt+AP = ̂  + ^Et[f 

P = ^ ( { l + [ ^ - g (1 + *)*]} (15) 

' From Eqs. (13) and (15) the following equation can 
be set up: 

\- (k - l)e2 = 2d - ~ (1 + &)e2 
4d * 

From this, 

e2 = 8d2/L[k - 1 + 2^(1 + k)] 

Substituting this value of e2 in Eq. (13), 

P = 4*h\i + ^(fe - 1) 
L L £ - 1 + 2d{\ + k) 

This may be reduced to 

] 

(16) 

(17) 

(18) 

'-f^Ms+G^)]}) <•« 
If the ratio Et/E is represented by the usual symbol 

r, Eq. (19) becomes 

AEti -TH ' / [ IHB- ; ) ] } )< -
•Let 

R = P / P , 

a) 

(20) 

Then, from Eq. (10), 

R = 1 + 

or 

P = 1 + 

In Fig. 10, R is plotted against lateral deflection for 
two different values of r. [NOTE: Eqs. (18) to (21a) 
do not apply when Et — 0, since the limiting column 
load is then determined by the stress at which this 
occurs.] 

I t should be noted that Fig. 10 corresponds to the 
usual plot of column load against lateral deflection. If 
the tangent modulus had been assumed to decrease with 
increasing stress (as it usually does), the curves would 
rise to some maximum value and then start downward 
again. I t is interesting to note that in the very short 
column range, where the tangent modulus approaches 
a constant value, test points often lie closer to the re
duced-modulus curve than to the tangent-modulus 
curve. 
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F I G . 10. Variation of column load with lateral deflection, 
assuming Et constant. 

COMPARISON WITH REDUCED-MODULUS THEORY 

The equation for the critical column load will now 
be derived on the basis of the assumptions originally 
used in the reduced-modulus theory. I t will be as
sumed that the column remains straight up to the 
critical load Prj after which it bends. The derivation 
proceeds as before, up to and including Eq. (13). Now, 
instead of assuming that there can be an increase in 
load, AP, it will be assumed that AP = 0. Then 
px = P2 and Etfii = Ee2} from which 

e2 = e^E/E) = a/k (22) 

(23) 

Substituting for ex from Eq. (12), 

e2 = • (i/k)[(4d/L) - e2] 

e2 = (4d/L)[l/(l + k)] 

Substitution of this value in Eq. (13) yields 

P r = (AEt/L){l +[(k - l)/(k + 1)]} (24) 

Eq. (24) obviously represents the limiting value of 
Eq. (19) as d approaches infinity. This proves that, 
for the simplified column, the reduced-modulus theory 
gives the limiting value for the column load as the 
lateral deflection approaches infinity, assuming that 
the value of the tangent modulus, Eu remains constant. 

The actual upper limit for the column load will de
pend largely on the manner in which Et varies with 
increasing strain, as shown by von Karman.6 I t is 
important to note, however, that, even for a perfect 
column, lateral deflection must take place as soon as 
the tangent-modulus load is exceeded and that the 
load predicted by the reduced-modulus theory can never 
be reached, even if there is no dropping off in the 
tangent modulus with increasing strain. 

Eq. (19) represents, for the simplified column and 
for a constant value of Eu the complete theory of 
column action. I t includes the Euler equation (when 
k = 1) and the Engesser (tangent-modulus) equation 
(when d = 0) and approaches the reduced-modulus 
equation as a limit (as d -* » ) . I t is suggested that 
an equation of this type be called the column equilibrium 

equation to avoid any question as to the definition of 
buckling or instability. 

VARIATION OF STRAIN WITH LOAD 

The equation already derived may be used to find 
equations for the strains in the two column elements. 
From Eqs. (21), (12), and (17)' the following equations 
may be derived: 

ei 
R m (k+1) 

e2 = 
R - 1 

ffl (k+1) 

(25) 

(26) 

From these equations it should be possible to obtain 
a graphical picture of the variation of strain against 
column load, to compare with the experimental curve 
of Fig. 5. Since Eqs. (25) and (26) apply only after 
the column has started to bend, at the load Pu it is 
necessary to determine the average compressive strain 
at the load Pt. The stress, obtained from Eq. (10), is 

Pt/A = Et/L • 

The actual strain corresponding to this stress would 
be obtained from the stress-strain diagram of the 
material. If the stress were in the elastic range, the 
strain would be 

et = P/AE = Et/EL = 1/kL (27) 

This would be the value of the strain at R = 1. 
(For most materials the strain would actually be con
siderably higher, but this does not affect the general 
results.) The additional strain in each element, 
beyond R = 1, will be put in terms of the strain et> 

giving 

Aei 

et 

Ae2 

k(k - R) m -& +1) 

= 2 
k(R - 1) m (k+1) 

(28) 

(29) 

These values are plotted in Fig. 11, which represents 
a typical variation of strain with column load, for a 
value of k = 1.333. 

Although Fig. 11 is based on extreme simplification 
of the problem and does not give a true picture of typical 
conditions, it has a general resemblance to Fig. 5, 
which was obtained from actual test data. I t is 
interesting to note that on the concave side of the 
column the compressive strain increases rapidly after 
the tangent-modulus load is reached, while on the 
convex side the strain starts to decrease rather slowly. 
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I N E L A S T I C C O L U M N T H E O R Y 267 

The rapid increase of compressive strain which is 
required to obtain additional load beyond Pt will 
usually involve a large reduction in Et. This indicates 
that in most actual cases the maximum column load 
will exceed the tangent-modulus load by only a slight 
amount. 

CONCLUSIONS 

Although the foregoing analysis is based on a hypo
thetical column that bears little resemblance to an 
actual column, extension of the theory to the more 
general case is largely a matter of mathematics. The 
fundamental principles of column action in the in
elastic range will not be changed by such generaliza
tion. The following conclusions can therefore be 
drawn from the analysis of the simplified column: 

(1) The tangent-modulus (Engesser) formula gives 
the maximum load at which an initially straight, 
centrally loaded column will remain straight. 

(2) The column load may exceed the tangent-
modulus load but cannot be greater than the reduced-
modulus load. (The latter statement has not been 
proved for the general case.) 

(3) Loading beyond the tangent-modulus load will 
cause bowing, which will produce permanent bending 
deformation (eccentricity). 

(4) There will be some portion of the column cross 
section for which the stress will never exceed the 
tangent-modulus stress. 

(5) After the tangent-modulus load is exceeded, 
the compressive strain over a portion of the cross 
section will increase much more rapidly than the average 
strain. 

(6) For most engineering materials the decrease 
in tangent modulus with increasing strain will limit the 
amount by which the column load may exceed the 
tangent-modulus value. 

(7) The idealized simplified column treated in this 
paper cannot sustain the reduced-modulus load unless 
the column is laterally supported while the axial load 
is being applied. 
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F I G . 11. Calculated strain variation with column load for a 
hypothetical column. 

(8) When supported against bowing during axial 
loading, a column in the inelastic range will sustain a 
greater axial load (with support removed) than when 
loaded without such support. 

(9) The tangent-modulus (Engesser) equation 
should be used as a basis for determining the buckling 
strength of members in the inelastic range. 

In conclusion, it would seem fitting to repeat a 
statement made by yon Karman6 to the effect that 
"Engesser appears to have been the first to recognize 
properly the nature of 'inelastic buckling.' " I t is-
interesting that aircraft engineers, in seeking greater 
accuracy in the inelastic range, have gone back to the 
formula that was first suggested by Engesser over 50 
years ago. 
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Discussion 

Dr. Theodore von K&rmdn: "The theory of buckling of a 
column subjected to axial load beyond the limit of elasticity 
has been discussed by many authors in the last three decades. 
Most of the objections, however, were not valid. Now Mr. 
Shanley comes along with an objection that is worthy of con
sideration. 

"Both Engesser's and my own analyses of the problem were 
based on the assumption that the equilibrium of the straight 
column becomes unstable when there are equilibrium positions 
infinitesimally near to the straight equilibrium position under 
the same axial load. The correct answer to this question is 
given by replacing, in Euler's equation, Young's modulus by the 
so-called reduced modulus. Mr. Shanley's analysis represents 
a generalization of the question. His procedure can be formu
lated as follows: What is the smallest value of the axial load a t 
which a bifurcation of the equilibrium positions can occur, re
gardless of whether or not the transition to the bent position 
requires an increase of the axial load? The answer to this ques
tion is that the first equilibrium bifurcation from the straight 
equilibrium configuration occurs at a load given by' the Euler 
formula when the Young's modulus is replaced by the tangent 
modulus. In fact, one can construct sequences of equilbrium 
positions starting from any load between the two limiting values 
corresponding to the tangent and the reduced moduli. The 
inclination of the equilibrium lines representing the load as a 
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function of the deflection is steepest for the line starting from the 
lower limiting load and becomes zero for the line starting from 
the upper limiting load. The equilibrium lines have an envelope 
tha t starts from the lower limiting load and—at least as long as 
the stress-strain curve can be considered straight and the de
flection small—approaches asymptotically the load computed 
with the reduced modulus. 

"Two aspects of the question are worthy of mention: 
"(a) My original analysis, and also Engesser's, is a generali

zation of the reasoning used in the theory of elastic buckling. 
Why does this not cover all possible equilibrium positions in 
the inelastic case? Obviously, it is not because of the non-
linearity of the stress-strain relation in the inelastic range but 
because of the nonreversible character of the process. There 
are infinite values of permanent strain which may correspond to 
the same stress, corresponding to different history of the loading 

and unloading procedure. Hence, the definition of the stability 
limit must be revised for nonreversible processes. This necessity 
was intuitively recognized by Mr. Shanley, which is, I believe, 
a great merit of his paper. 

"(b) Although the Euler formula with the tangent modulus 
does not, in general, give the maximum axial load to which the 
column can be subjected without large deflection, it is con
servative and therefore advisable to use this formula for practical 
computation of column loads. As I have shown in my paper 
of 1909, also the load deflection curve that starts from the upper 
limiting load in general soon assumes a negative slope. Conse
quently, it is difficult to determine the actual peak of the axial 
load. I t will certainly be between the two values tha t correspond 
to the tangent and the reduced moduli. These two values can 
be respectively designated as the lower and upper limits of the 
critical load." 
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